Katarzyna Ostasiewicz
ARTICLE

(Polish) PDF

ABSTRACT

There are various theoretical distributions which are used as models for the distribution of income. Among them the most commonly used is probably log-normal distribution, but also gamma distribution or log-logistic one. There are also a number of approximation methods of these distributions. The goodness of fit is commonly measured by mean squared deviation or value of X2 statistics. However, such measures of quality of approximation do not necessarily coincide with accuracy of some distribution characteristics, like inequality measures. The aim of this paper is to investigate the goodness of approximation of income distribution, given in the form of frequency distribution, by means of chosen theoretical distributions, namely, log-normal, gamma, log-logistic, Dagum and Singh-Maddala distribution. The goodness is measured both by mean squared error and deviation of some distribution characteristics. Values calculated on ungrouped data are used as a reference for comparisons.

KEYWORDS

theoretical income distribution; approximation of distribution; goodness of fit

REFERENCES

[1] Aitchison J., Brown J. A. C., (1969), The Lognormal Distribution, Cambridge University Press, Cambridge.

[2] Champernowne D. G., (1953), A Model of Income Distribution, The Economic Journal, 63, 318–351.

[3] Cox D. R., Hinckley D. V., (1974), Theoretical Statistics, Chapman and Hall, London.

[4] Dagum C., (1977), A New Model of Personal Income Distribution: Specifi cation and Estimation, Economie Appliquée, 30, 413–437.

[5] Dagum C., Lemmi A., (1987), A Contribution to the Analysis of Income Distribution and Income Inequality, and a case study: Italy, University of Ottawa, Department of Economics.

[6] Fisk P. R., (1961), The Graduation of Income Distributions, Econometrica, 29, 171–185.

[7] Gastwirth J. L., (1972), The Estimation of the Lorenz Curve and Gini Index, The Review of Economics and Statistics, 54, 306–316.

[8] Kleiber Ch., (1996), Dagum vs. Singh-Maddala Income Distributions, Economics Letters, 53, 265–268.

[9] Kośny M., (2001), Probabilistyczne modele rozkładu dochodów, Wiadomości Statystyczne, 7, 20–35.

[10] Kot S. M. (red.), (1999), Analiza ekonometryczna kształtowania się płac w Polsce w okresie transformacji, Wydawnictwo Naukowe PWN.

[11] Kot S. M., (1995), Probabilistyczny model dystrybucji dochodu wraz ze współwariantami, Przegląd Statystyczny, 42, 155–180.

[12] Kot S. M., Adamkiewicz-Drwiłło H., (2013), Rekonstrukcja światowego rozkładu dochodów na podstawie minimalnej informacji statystycznej, Śląski Przegląd Statystyczny, 11 (17), 179–200.

[13] McDonald J.B., Ransom M.R., (1979), Functional Forms, Estimation Techniques and the Distribution of Income, Econometrica, 47, 1513–1525.

[14] Neyman J., (1949), Contribution to the Theory of the ?2 Test, Proceedings of the First Berkeley Symposium on Mathematical Statistics and Probability, 1, 239–273.

[15] Panek T., Szulc A., (1991), Income Distribution and Poverty. Theory and a Case Study of Poland in the Eighties, Research Centre for Statistical and Economic Analysis of the Central Statistical Offi ce and Academy of Science.

[16] Salem A. B. Z., Mount T. D., (1974), A Convenient Descriptive Model of Income Distribution: The Gamma Density, Econometrica, 42, 1115–1127.

[17] Singh S. K., Maddala G. S., (1976), A Function for Size Distribution of Incomes, Econometrica, 44, 963–970.

[18] Stuart A., Ord J. K., (1991), Classical Inference and Relationship, Vol. 2., Kendall’s Advanced Theory of Statistics, Edward Arnold, New York.

[19] Thurow L. C., (1970), Analyzing the American Income Distribution, American Economic Review, 60, 261–269.

[20] Ulman P., (2011), Rozkłady dochodów gospodarstw domowych, w: Sytuacja osób niepełnosprawnych i ich gospodarstw domowych w Polsce, Wydawnictwo Uniwersytetu Ekonomicznego w Krakowie.

Back to top
© 2019–2022 Copyright by Statistics Poland, some rights reserved. Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0